More Recent Comments

Tuesday, June 16, 2009

Preparing for Professor Palazzo

 
Alex Palazzo (The Daily Transcript) is coming to Toronto. In two weeks he will be joining my Department as a Professor (Assistant variety) and colleague.

There's been a flurry of activity in the lab that's been assigned to him. It's just around the corner from my office so I've been able to keep track of the clean-out and the renovations. So far it looks like it will be ready just in time.

It will be exciting to have another blogger in the department. (We already have several.) I'm really looking forward to Alex's arrival so I can teach him a few things about science—things he seems to have missed while doing his post-doc in one of the lesser schools south of the border.

I'm not looking forward to paying off my bet with him. I'd explain why I lost but it's a long story.


2 comments :

charlie wagner said...

Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine.
Zuckerkandl E.

Institute of Molecular Medical Sciences, Stanford, CA 94309, USA. EmileIMMS@aol.com

It is recalled that dispensability of sequences and neutral substitution rate must not be construed to be markers of nonfunctionality. Different aspects of functionality relate to differently-sized nucleotide communities. At the time cells became nucleated, a boom of epigenetic processes led to uses of DNA that required many more nucleotides operating collectively than do functions definable in terms of classical genetics. Each order of magnitude of nucleotide plurality was colonized by functions germane to that order. The eukaryote genome became a great epigenetic machine. Sequences of different levels of nucleotide plurality are briefly discussed from the point of view of their functional relevance. By their activities as both transcribed genes and cis-acting repeats, SINEs and LINEs are the principal link between genetic and epigenetic processes. SINEs can act as local repeats to produce position effect variegation (PEV) in a nearby gene. PEV may thus represent a general method of overall transcriptional regulation at the level of cell collectivities. When tracking the scale dependence of nucleotide function, one finds the 100 kb order of nucleotide plurality to provide epigenetically the basis at once for PEV, imprinting, and cell determination, with sectorial repressibility a trait common to the three. In sectorial repressibility, introns may play a structural role favoring the stability of higher-order chromatin structures. At that level of nucleotide involvement, nonconserved nonhomologous nonprotein-coding sequences may often play the same structural roles. In addition, genomic distance per se--and, therefore, the mass of intervening nucleotides--can have functional effects. Distances between enhancers and promoters need to be probed in this respect. At the 1,000 kb level of nucleotide function, attention is focused on the formation of centromeres. It is one of the levels of nucleotide plurality per function where specificity in the generation of DNA/protein complexes seems to depend more upon the structural fit among factors than upon the DNA sequence. This circumstance may explain in part the prevailing difficulty in recognizing the functional nature of sequences among non-protein-coding nucleotide arrays and the propensity among investigators to tag the majority of DNA sequences in higher organisms as functionally meaningless. Noncoding DNA often may not be 'selected' as an appropriate niche for a certain function, but be 'elected' in that capacity by a group of factors, as a preexisting sequence that is only now called upon to serve. Much of the non-protein-coding DNA may thus be only conditionally functional and in fact may never be elected to functions at a high level of nucleotide plurality. Eukaryotes are composites, at different levels of this plurality, of the functional and the nonfunctional, as well as of the conditionally functional and the outright functional. Thus, a sequence that is nonfunctional at one level of nucleotide plurality may participate in a functional sequence at a more inclusive level. In the end, every nucleotide is at least infinitesimally functional if, for metabolic and developmental reasons, the chromatin mass as such becomes a selectable entity. Given the scale dependence of nucleotide function, large amounts of 'junk DNA', contrary to common belief, must be assumed to contribute to the complexity of gene interaction systems and of organisms.

Unknown said...

could you please persuade him to keep updating his blog? I really enjoyed his articles.